A Multi-stage Monte Carlo Sampling Based Stochastic Programming Model for the Dynamic Vehicle Allocation Problem

نویسندگان

  • Wei Fan
  • Randy Machemehl
چکیده

Optimization under uncertainty has seen many applications in the industrial world. The objective of this paper is to study the stochastic dynamic vehicle allocation problem (SDVAP), which is faced by many trucking companies, container companies, rental car agencies and railroads. To maximize profits and to manage fleets of vehicles in both time and space, this paper has formulated a multistage stochastic programming based model for SDVAP. A Monte Carlo Sampling Based Algorithm has been proposed to solve SDVAP. A probabilistic statement regarding the quality of the solution from the Monte Carlo sampling method is also identified by introducing a lower bound and an upper bound of the obtained optimal solution. A five-stage experimental network was introduced for demonstration of this algorithm. The computational results indicated a solution of high quality when Monte Carlo sampling based algorithm is used for solving SDVAP, strongly suggesting that these algorithms can be used for real world applications for decision making under uncertainty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A two-stage stochastic programming model for the optimal sizing of hybrid PV/diesel/battery in hybrid electric ship system

Ships play the major role in bulk transportation and they need their special energy system. This paper proposes a stochastic programing method for optimal sizing of a hybrid ship power system with energy storage system (ESS), photovoltaic power (PV) and diesel generator. To account for uncertainties, in this study a two-stage stochastic mixed-integer non-linear programing is used to model the o...

متن کامل

Designing a new multi-objective fuzzy stochastic DEA model in a dynamic ‎environment to estimate efficiency of decision making units (Case Study: An Iranian Petroleum Company)

This ‎paper presents a new multi-objective fuzzy stochastic data envelopment analysis model          (MOFS-DEA) under mean chance constraints and common weights to estimate the efficiency of decision making units for future financial periods of them. In the initial MOFS-DEA ‏model, the outputs and inputs are ‎characterized by random triangular fuzzy variables with normal distribution, in which ...

متن کامل

Scenario-based modeling for multiple allocation hub location problem under disruption risk: multiple cuts Benders decomposition approach

The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of ...

متن کامل

Dynamic Asset Allocation Strategies Using a Stochastic Dynamic Programming Approach∗

A major investment decision for individual and institutional investors alike is to choose between different asset classes, i.e., equity investments and interest-bearing investments. The asset allocation decision determines the ultimate risk and return of a portfolio. The asset allocation problem is frequently addressed either through a static analysis, based on Markowitz’ mean-variance model, o...

متن کامل

A Multi-Stage Single-Machine Replacement Strategy Using Stochastic Dynamic Programming

In this paper, the single machine replacement problem is being modeled into the frameworks of stochastic dynamic programming and control threshold policy, where some properties of the optimal values of the control thresholds are derived. Using these properties and by minimizing a cost function, the optimal values of two control thresholds for the time between productions of two successive nonco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004